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Abstract
The quasi-mutual entropy in the Jaynes–Cummings model is rigorously derived
without using the diagonal approximation. The variation of the correlation in
this model for the time development and the statistical mixture parameter is
discussed.

PACS numbers: 89.70.+c, 03.65.−w, 05.30.−d, 42.50.−p

1. Introduction

It is known that the time development in the Jaynes–Cummings model (JCM) exhibits
correlation between the two-level atom and the field [1]. So we have studied the time
development of the final state in the JCM in the previous papers by applying the quasi-mutual
entropy with the diagonal approximation [2, 3]. In this paper, we derive the quasi-mutual
entropy for the JCM without the diagonal approximation and then discuss the variation of the
correlation in this model for the time development and the statistical mixture parameter, as it
was pointed out in [4] that the mutual entropy measures the degree of the total of the classical
and quantum correlation.

We consider two subsystems H1 and H2 represented by Hilbert space. Let S(Hi ) (i =
1, 2) be state spaces (the set of all density operators). Also S(H1 ⊗ H2) denotes the state
space in the composite system H1 ⊗ H2.

For a quantum state� ∈ S(H1 ⊗H2), the quasi-mutual entropy is defined by the following
formula as a distance (difference) from a product state trH1� ⊗ trH2� ∈ S(H1 ⊗ H2):

I (�) = tr�
(
log� − log

(
trH1� ⊗ trH2�

))
.

Here we should note that the term quasi means that this mutual entropy does not depend
on the channelling transformation describing the physical processes such as communication
processes from input to output states. The quasi-mutual entropy was first defined in [5] to
be applied to irreversible processes as a consistent work of mathematical formalism based
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on functional analysis or quantum mechanical entropy theory, whereas the quantum mutual
entropy was defined in [6] to be applied to communication processes owing to the remarkable
concept of compound states which correspond to the joint probability in classical theory.

In section 2, we briefly review the JCM. Also we derive the quasi-mutual entropy
in the JCM more rigorously in section 3 than in the previous papers [2, 3] which allow
diagonal approximation mentioned in section 3. Finally in section 4 we give some numerical
computations for the quasi-mutual entropy in the JCM and discuss some features of the JCM
from the viewpoint of the correlation between the atom and the photon.

2. Jaynes–Cummings model

The quantum electrodynamical interaction of a single two-level atom with a single mode of
an electromagnetic field is described by the well-known Jaynes–Cummings model [7]. The
JCM is the simplest nontrivial model of two interacting fully quantum systems and has an
exact solution. It also brings us some interesting phenomena such as collapses and revivals.
It has been investigated in detail by many researchers from various points of view. The
JCM is not only an important problem in itself but also gives an excellent example of the
so-called quantum open system problem [8], namely the interaction between a system and
a reservoir. In the previous paper [9], we treated the JCM as a problem in nonequilibrium
statistical mechanics and applied quantum mutual entropy [5] based on von Neumann entropy
by finding the quantum mechanical channel [5] which expresses the state change of the atom
on the JCM. This study was an attempt to obtain a new insight into the dynamical change of
the state for the atom on the JCM [9].

On the other hand, this model has one of the most interesting features, which is the
correlation developed between the atom and the field during the interaction. There have been
several approaches to analyse the time evolution in this model, for instance, von Neumann
entropy and atomic inversion. In the previous paper [2], we adopted the quasi-mutual entropy
to measure the degree of correlation in the time development of the JCM and showed that the
quasi-mutual entropy can be controlled by means of the squeezed state in [3]. In this paper, we
rigorously derive the quasi-mutual entropy in the JCM, which takes into account the negative
energy and does not allow diagonal approximation.

The resonant JCM Hamiltonian can be expressed by the rotating-wave approximation in
the following form:

H = HA +HF +HI HA = 1
2 h̄ωAσz

HF = h̄ωF a
∗a HI = h̄g(a ⊗ σ + + a∗ ⊗ σ−)

where g is a coupling constant, σ± are the pseudo-spin matrices of a two-level atom, σz is
the z-component of the Pauli spin matrix and a and a∗ are the annihilation and the creation
operators of a photon, respectively. It is almost impossible to physically realize the pure states,
so we suppose that the initial states of the atomic system are the statistical mixture states of
an excited state and a ground state, which are the more realistic representation of the states.
That is, we now suppose that the initial state of the atom is a statistical mixture of the ground
state and the excited state:

ρ = λ0E0 + λ1E1 ∈ SA (1)

where E0 = |↓〉〈↓|, E1 = |↑〉〈↑|, λ0 + λ1 = 1. Let the field initially be in a coherent state:

� = |θ〉〈θ | ∈ SF |θ〉 = e− 1
2 |θ |2 ∑

l

θ l√
l!

|l〉. (2)
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Figure 1. The population inversion as a function of time t.

The continuous map E∗
t describing the time evolution between the atom and the field for the

JCM is defined by the unitary operator generated by the total Hamiltonian H such that

E∗
t : SA → SA ⊗ SF E∗

t ρ = Ut (ρ ⊗�)U∗
t Ut ≡ e−itH/h̄. (3)

This unitary operator Ut is written as

Ut = e−itH/h̄ =
∞∑
n=0

1∑
j=0

e−itE(n)j
∣∣∣�(n)

j

〉 〈
�
(n)
j

∣∣∣ (4)

where

E
(n)

j = h̄ωF

(
n +

1

2

)
+
h̄

2
(−1)j+1

√
(ωF − ωA)2 + 4	2

n (5)

are the eigenvalues with	n = g
√
n + 1, called Rabi frequency, and

∣∣�(n)

j

〉
are the eigenvectors

associated withE(n)j . When we setωA = ωF , the transition probability that the atom is initially
prepared in the excited state and stays in the excited state after time t is given by

c(t) = e−|θ |2
∞∑
n=0

|θ |2n
n!

cos2	nt.

Also the transition probability that the atom is initially prepared in the excited state and is in
the ground state after time t is given by

s(t) = e−|θ |2
∞∑
n=0

|θ |2n
n!

sin2	nt.

Note that c(t) − s(t) is often called the population inversion and used to analyse the time
development of the atomic system.

Figure 1 shows the population inversion for the coupling constant g = 1 and a mean
photon number |θ |2 = 5. This model yields a dephase around the time tc ≈ 1/g and shows the
damped oscillation with the Gaussian envelope. This damping is caused by the difference and
interference of the Rabi frequency	n. This damping phenomenon is often called Cummings
collapses [1, 10]. Figure 1 shows that the atom in this model is at the most uncertain state at
the time when the population inversion is equal to 0, namely around t ∼= 3–7. So, it can be
seen that the system in this model at that time becomes the most correlated. Later the system
shows revival around tr ∼= 2π |θ |/g. The reason for revival is considered as a rephase, and its
revival periodically appears at each Tk = ktr (k = 1, 2, 3, . . .). It is also known [1, 11] that
the system in this model returns most closely to a pure state of the atom around tr/2, during
the collapse interval. For details on this model, the readers may refer to the excellent reviews
[1, 12].
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3. Rigorous derivation of quasi-mutual entropy in the JCM

The eigenvectors of the total Hamiltonian H are given by∣∣∣�(n)
0

〉
= cos θn|n ⊗ ↑〉 − sin θn|n + 1 ⊗ ↓〉 (6)

∣∣∣�(n)
1

〉
= sin θn|n ⊗ ↑〉 + cos θn|n + 1 ⊗ ↓〉 (7)

where

tan θn ≡ 2g
√
n + 1

(ωF − ωA) +
√
(ωF − ωA)2 + 4g2(n + 1)

.

Throughout the present paper, we consider only the case of

ωA = ωF ≡ ω (8)

so we can take tan θn = 1, namely θn = π
4 . Then defining

˜
E
(nm)

jk ≡ e−it (E(n)j −E(m)k ) (j = 0, 1 k = 0, 1)

the final state at any time t is given by

E∗
t ρ ≡ Ut(ρ ⊗�)U∗

t

=
∞∑

m,n=0

1∑
j,k=0

˜
E
(nm)

jk

〈
�
(n)

j

∣∣∣ ρ ⊗�

∣∣∣�(m)

k

〉 ∣∣∣�(n)

j

〉 〈
�
(m)

k

∣∣∣ (9)

In the previous papers [2, 3], we derived the quasi-mutual entropy for the JCM by applying
the following approximation:〈
�
(n)
j

∣∣∣ ρ ⊗�

∣∣∣�(m)
k

〉
∼=
〈
�
(n)
j

∣∣∣ ρ ⊗�

∣∣∣�(n)
k

〉
δmn for j = 0, 1 k = 0, 1.

However, in the present paper, we rigorously derive the quasi-mutual entropy in the JCM
without the above approximation.

Taking into account the negative energy term, − 1
2 h̄ωA, the following eigenequations hold

for the total Hamiltonian H:

H

∣∣∣�(n)
j

〉
= E

(n)
j

∣∣∣�(n)
j

〉
(n = 0, 1, 2, . . .)

H |−1 ⊗ ↓〉 = − 1
2 h̄ωA|−1 ⊗ ↓〉

whereE(n)j and
∣∣�(n)

j

〉
are given in (5), (6) and (7). Under the assumptions (1), (2) and (8), the

final state is derived as follows:

E∗
t ρ = λ0|�0(t)〉〈�0(t)| + λ1|�1(t)〉〈�1(t)| (10)

where

|�1(t)〉 ≡ e− 1
2 |θ |2

1∑
j=0

∞∑
n=0

θn√
2n!

e−itE(n)j
∣∣∣�(n)

j

〉

|�0(t)〉 ≡ e− 1
2 |θ |2

(
ei ω2 t |0 ⊗ ↓〉 +

1∑
j=0

∞∑
n=0

(−1)j+1θn+1

√
2(n + 1)!

e−itE(n)j
∣∣∣�(n)

j

〉 )
.

Since von Neumann entropy for the total system does not change for unitary evolution, it is
given by

S(E∗
t ρ) = −

1∑
i=0

λi logλi. (11)
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Taking the partial trace over the atomic system, we obtain

ρFt = trAE∗
t ρ

= λ0(|ψ1(t)〉〈ψ1(t)| + |ψ2(t)〉〈ψ2(t)|) + λ1(|ψ3(t)〉〈ψ3(t)| + |ψ4(t)〉〈ψ4(t)|)
where

|ψ1(t)〉 = e− 1
2 |θ |2

∞∑
n=0

θn√
n!

e−iωnt cos	nt|n〉

|ψ2(t)〉 = −i e− 1
2 |θ |2

∞∑
n=0

θn−1

√
(n− 1)!

e−iωn−1 t sin	n−1t|n〉

|ψ3(t)〉 = −i e− 1
2 |θ |2

∞∑
n=0

θn+1

√
(n + 1)!

e−iωnt sin	nt|n〉

|ψ4(t)〉 = e− 1
2 |θ |2

∞∑
n=0

θn√
n!

e−iωn−1 t cos	n−1t|n〉

with

ωn = ω
(
n + 1

2

)
	n = g

√
n + 1.

Then the von Neumann entropy for the reduced state S
(
ρFt
)

is computed by

S
(
ρFt
) = −

4∑
i=1

λFi (t) logλFi (t) (12)

where λFi (t) are the solutions of

det[ρ(t̂)− λ(t̂)N(t̂)] = 0

where ρ(t̂) and N(t̂) are the 4 × 4 matrices having the following elements:

[ρ(t̂)]ij ≡ 〈ψi(t)|ρFt |ψj (t)〉 (i, j = 1, 2, 3, 4)

[N(t̂)]ij ≡ 〈ψi(t)|ψj (t)〉 (i, j = 1, 2, 3, 4).

On the other hand, the final state of the atomic system is given by taking the partial trace
over the field system:

ρAt ≡ trFE∗
t ρ

= c↑↑(t)|↑〉〈↑| + c↑↓(t)|↑〉〈↓| + c↓↑(t)|↓〉〈↑| + c↓↓(t)|↓〉〈↓|
where

c↑↑(t) = e−|θ |2
∞∑
n=0

{
λ0

|θ |2(n+1)

(n + 1)!
sin2 	nt + λ1

|θ |2n
n!

cos2 	nt

}

c↓↑(t) = c↑↓(t)∗

c↑↓(t) = i e−(|θ |2+iωt)

×
∞∑
n=0

{
λ1

θnθ∗(n−1)

√
n!(n− 1)!

cos	nt sin	n−1t − λ0
θn+1θ∗n

√
(n + 1)!n!

sin	nt cos	n−1t

}

c↓↓(t) = e−|θ |2
∞∑
n=0

{
λ0

|θ |2n
n!

cos2	n−1t + λ1
|θ |2(n−1)

(n− 1)!
sin2 	n−1t

}
.
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Figure 2. The quasi-mutual entropy as a function of t in the case of λ0 = 0.0, ω = 1, g = 1 and
|θ |2 = 5.

Then the von Neumann entropy for the reduced state S
(
ρAt
)

is computed by

S
(
ρAt
) = −

2∑
i=1

λAi (t) logλAi (t) (13)

where λAi (t) is given by

λAi (t) = 1
2

{
1 + (−1)i

√
(c↑↑(t)− c↓↓(t))2 + 4|c↑↓(t)|2

}
.

Thus we rigorously obtain the quasi-mutual entropy in the JCM from (11), (12) and (13):

I (E∗
t ρ) ≡ tr E∗

t ρ
(

log E∗
t ρ − log

(
ρAt ⊗ ρFt

))
= S

(
ρAt
)

+ S
(
ρFt
)− S(E∗

t ρ) (14)

= −
4∑
i=1

λFi (t) logλFi (t)−
2∑
i=1

λAi (t) logλAi (t) +
1∑
i=0

λi logλi. (15)

4. Numerical computations

We should note that if we set the statistical mixture parameter of the initial state in the
atomic system λ0 = 0 or 1, the final state presented in (10) becomes the pure state and then
S(E∗

t ρ) = 0. Therefore it is sufficient to use von Neumann entropy in order to measure the
degree of correlation for the above cases. Then our quasi-mutual entropy takes just twice
the reduced von Neumann entropy, i.e., I (E∗

t ρ) = 2S
(
ρAt
)
. In paper [13], these situations

have been considered and the reduced von Neumann entropy has been applied to analyse the
quantum fluctuations; however, it does not directly focus on the degree of the correlation. In
the general case (i.e., λ0 �= 0 or 1), the final state does not necessarily become the pure state,
so that we need to adopt the quasi-mutual entropy in order to measure the degree of correlation
in the JCM. In fact, the initial state of the atomic system was considered as an exited state or
a ground state in [13]; however, we start from the statistical mixture of an exited state and a
ground state, namely equation (1) as an initial state of the atomic system. Thus, our initial
setting enables us to discuss the variation of the quasi-mutual entropy by the difference of the
statistical mixture parameter λ0 from the initial atomic system.

Figures 2–5 show the time development of the quasi-mutual entropy in the case of
λ0 = 0, λ0 = 0.1, λ0 = 0.3 and λ0 = 0.5. From these figures, we find that the amplitude of
the oscillation decreases with increasing λ0. We find that our quasi-mutual entropy in figure 2
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Figure 3. The quasi-mutual entropy as a function of t in the case of λ0 = 0.1, ω = 1, g = 1 and
|θ |2 = 5.
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Figure 4. The quasi-mutual entropy as a function of t in the case of λ0 = 0.3, ω = 1, g = 1 and
|θ |2 = 5.
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Figure 5. The quasi-mutual entropy as a function of t in the case of λ0 = 0.5, ω = 1, g = 1 and
|θ |2 = 5.

(λ0 = 0) takes just twice the value of von Neumann entropy plotted in [13] for all t. This
result is quite natural, because E∗

t ρ is a pure state in this case (λ0 = 0). In the short time of
the figures (figures 2–5), we also find that the quasi-mutual entropy takes the local maximum
points at around t ∼= 2 and they become smaller as λ0 increases.

Figure 6 shows the quasi-mutual entropy as a function of statistical mixture parameter
λ0 at the first revival time tr ∼= 2π |θ |/g. From this figure, we find that the quasi-mutual
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Figure 6. The quasi-mutual entropy for λ0 in the case of t = tr , ω = 1, g = 1 and |θ |2 = 5.

entropy takes the largest value in λ0 = 0 which is one of the pure states. Although it might be
expected that the quasi-mutual entropy has an axial symmetry with respect to λ0 = 0.5 (as the
quasi-mutual entropy does in t = 0), figure 6 shows that the quasi-mutual entropy does not
have quite an axial symmetry with respect to λ0 = 0.5. We can also say that the quasi-mutual
entropy has a different value even for pure states (λ0 = 0 or λ0 = 1). If we treat the time
development of the JCM as a kind of physical transformation, the degree of correlation cannot
keep a symmetry for λ0 = 0.5 by this transformation. This result is caused by the fact that,
according to the initial state of the two-level atom being an upper level or a lower level, it
exchanges a different energy with the field (periodically the lower-level atom absorbs a photon
and the upper-level atom emits a photon) in the time development of the JCM. These results
could be obtained by setting the initial state of the atom as the statistical mixture of an exited
state and a ground state.

As we have seen, we have rigorously derived a kind of measure of the degree of correlation
for the final state in the JCM without diagonal approximation. We suggest that the method
using the quasi-mutual entropy can be applied to the other Hamiltonian models such as the
Raman-coupled model.
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